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ABSTRACT

Adaptive Digital Audio Effects are sound transformations controlled by features extracted from the sound
itself. Artificial reverberation is used by sound engineers in the mixing process for a variety of technical
and artistic reasons, including to give the perception that it was captured in a closed space. We propose a
design of an adaptive digital audio effect for artificial reverberation that allows it to learn from the user in a
supervised way. We perform feature selection and dimensionality reduction on features extracted from our
training data set. Then a user provides examples of reverberation parameters for the training data. Finally,
we train a set of classifiers and compare them using 10-fold cross validation to compare classification success
ratios and mean squared errors. Tracks from the Open Multitrack Testbed are used in order to train and
test our models.

1. INTRODUCTION
Digital Audio Effects (DAFx) are transformations on an
audio signal, or a set of audio signals, where the trans-
formation depends on a set of control parameters. In
general, users of DAFx control these parameters them-
selves and they tend to change these parameters over
time based on how the audio sounds. They assign spe-
cific audio features (or their changes) to specific parame-
ters (or changes). Unknowingly, they are doing a form of
classification where the samples are features of the audio,
and the classes are parameter sets. Our goal is to simu-
late this process using a supervised learning approach to
train classifiers so that they automatically assign effect
parameter sets to audio features. This way, we can train
our reverberation effect to decide how to choose its pa-
rameters based just on the observed audio.

In order to achieve this, we perform factor analysis to se-
lect the best features from a 31-dimensional feature space
from 8 features found in the literature. Pre-processing is
applied on the resulting features as well as on the pa-
rameters which we cluster into sets using k-means. We
then compare 4 different classifiers on the classification
task where our samples are vectors of audio features and
classes are the parameter-set clusters. The training data
consists of the control parameters provided by the user
with a simple interface that allows her to control a sim-

ple reverberation effect. Testing is done using cross-
validation.

2. PREVIOUS WORK
There has been a lot of research in Adaptive Digital Au-
dio Effect for automatic multitrack mixing but in almost
all cases they focus on achieving a pre-specified goal.
Parameter automation and intelligent control have been
applied to many of the most popular audio effects (e.g.
gain and faders [1], equalization [2], panning [3] and dy-
namic range compression [4]), but to the best of the au-
thors’ knowledge it has not been attempted on artificial
reverberation. Furthermore, all of the above mentioned
approaches except [1] which use Linear Dynamical Sys-
tems to estimate mixing weight coefficients, use fixed
rules, rather than arbitrary rules that are learned from
training data. On the other hand, to the knowledge of
the authors, there are no published works on Automatic
Application of Reverberation. Important work however,
is found in [5] where the authors try to assign descrip-
tive terms to reverberation parameters. Similar work can
be found in [6] where they use a Reverberation Effect
among others for their S.A.F.E semantic audio project
which allows users to assign high level descriptive terms
to low level audio feature changes that are caused by ef-
fect parameter changes. In a similar fashion, [7] create
a map of high level descriptive terms that correspond to
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Fig. 1: Rafii & Pardo’s Algorithmic Reverberator. Filter
boxes are represented by their control parameters. dν ,gν

for ν = 1 . . .6 represent Comb Filter delays and gains
respectively, da all-pass filter delays, gc low-pass filter
gain and G is a dry/wet mixer gain. User can control the
parameters shown in bold.
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Fig. 2: Training of classifier models

low level reverb parameters. Relevant work in [8] per-
forms classification for drum sounds in order to control
effect parameters, but still relies on fixed rules.

3. EFFECT ARCHITECTURE

Our proposed design uses the traditional adaptive DAFX
design [9] limited to one track and can be seen in detail
in Figure 3. It consists of an artificial reverberator ef-
fect where the values of the parameters are decided by a
classifier model. The classifier model can be trained on-
line or off-line. The architecture of the model training
process can be seen in Figure 2 where φφφ i is the feature
vector of the i-th frame, ΦΦΦi is a matrix of features which
consists of the vertical concatenation of the feature vec-
tors (as row vectors), from frame 1 to frame i. In a similar
fashion, CCCi is a matrix which consists of control param-
eters. θθθ is the classifier parameter vector, DDD a dictionary
that maps class labels to reverberator parameter sets, and
ccc′′′ are the selected effect parameters.

Note that, several features require the accumulation of
a number of samples in a buffer (i.e. spectral features)
to be computed. In such cases, latency equal to size of
the buffer × the size of the frame is introduced. Sim-
ilarly, some classifier models require the accumulation

x[n] Feature
extraction Buffer

φφφ [i]

DDDi θθθ [i]

ClassifierDecoder

ΦΦΦi

Ji

Reverberation
Effect

ccc′′′[i]
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Fig. 3: Reverb application

of several values before being able to make a decision
and therefore introduce latency equal to number of pre-
vious values × buffer size × size of each frame. Conse-
quently, our architecture, although implementable in real
time, can introduce latency that depends on the features
chosen, as well as the models used. One therefore should
be careful in their choice of features and classifier model.

For our reverberation effect we use the algorithmic de-
sign described in [5] (Figure 1) because of its simplicity
in design and the fact that it can be trained directly from
measurements of the reverberation. However, our archi-
tecture is not limited to just this particular reverberation
model. The parameters of the reverberation and what
they affect can be seen in Table 1.

Parameter Controls Affects
d1 Comb filter array Reverberation Time

Echo Density
Central Time

da All-pass filter array Echo Density
Central Time

g1 Comb filter array Reverberation Time
Clarity
Central Time

gc Low-pass filter array Spectral Centroid
G Dry/Wet mix Reverberation Time

Clarity

Table 1: Algorithmic Reverberation Parameters
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4. FEATURE EXTRACTION

Application of reverberation to a track can depend on the
instrumentation, the type of music and the percussive-
ness of the track, among others. For our task we use 8
different features. Their names and their role can be seen
in Table 2 [10], [11], [12]. The reason for choosing these
features is because they have been used extensively in
the literature for classification of instruments based on
the above characteristics.

Before extracting the features from our audio, we first
split the audio into 23ms frames (1024 samples at
44.1Hz, commonly used in the literature for audio-based
machine-learning tasks) using the onset-based audio seg-
mentation method described in [13] which is based on
the Spectral Contrast feature. The reason for choosing
this kind of segmentation, as shown in the same paper, is
that it appears to give higher classification accuracies for
at least the music-genre classification task. We then con-
catenate our features into a 31 dimensional vector1 for
each frame. Next, we use Principal Component Analy-
sis [14] to filter out nonseparable or noisy features and re-
duce our feature vectors’ dimensionality. We use Horn’s
Parallel Analysis [15], [16] to find the optimal number of
Principal Components to keep.

Feature Used in
ZeroCrossingRate Instrument Identification

Source Identification
13 MFCCs Instrument Identification

Genre Classification
12 Spectral Contrast Instrument Identification
Coefficients Genre Classification
Root Mean Square Instrument Identification

Voice/Music Discrimination
Audio Activity Detection

Crest Factor Instrument Identification
Spectral Centroid Instrument Identification

Genre Classification
Spectral Roll-off Instrument Identification

Genre Classification
Spectral Flux Instrument Identification

Table 2: Used features and their usage in the literature.

1MFCCs and Spectral Contrast features have 13 and 12 dimensions
respectively.

5. CLASSIFICATION

We use classification on the audio features in order to
control the values of the reverberation effect parameters.
Given audio segments with applied reverb we do the fol-
lowing:

1. Assign a different label for every different set of re-
verb parameters assigned. The labels will constitute
our class labels. Keep a dictionary structure com-
prised of the parameter sets and the labels to which
they correspond.

2. Segment the audio segments to frames and calculate
a feature vector for each frame.

3. Train a classifier model that classifies the features
extracted to the labels given above.

For the application of reverberation:

1. Segment the audio, to which we want to apply re-
verb, to frames and calculate a feature vector for
each frame.

2. Classify the new features to the class labels found
in the training phase.

3. Use the dictionary structure derived in the training
phase to change from class labels to reverberation
effect parameters.

More specifically, for the training phase, we consider the
vectors:

ci =
[
d′1i d′ai g′1i g′ci G′i

]T
φφφ i = [φi1 φi2 . . . φiM]T

The elements of ccci are the values of the parameters
shown in Table 1 normalized to (0,1), at frame i. Corre-
spondingly, the elements of φφφ i are values of features of
Table 2, normalized again to (0,1) at frame i. We also
consider the (unique) sets:

C = {ci : ∀i}

then |C| is the number of classes. We then define the
variable:

Ji =
|C|

∑
k=1

k[ci == Ck],∀i = 1 . . .M,k = 1 . . .N
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We will call J our parameters label variable. Consis-
tently, we will call A with values a1...I our parameters
variable and F with values f1...I our features variable.

We compare 5 different classifiers: Gaussian Naive
Bayes Classifier [17], All-vs-all Linear Support Vector
Machine (SVM) Classifier [18], Hidden Markov Model
Maximum A-posteriori Classifier [17], a hybrid HMM
classifier with observations taken from a set of SVMs
[19] and one we will call the Sinkhole approach classi-
fier, that uses the classification results of all of the above
and a voting scheme. The last three take into consider-
ation past time events while the first two consider just
the current frame. Below we give a small description of
each.

5.1. Gaussian Naive Bayes Classifier
Gaussian Naive Bayes Classifier (In short GNBC) is a
version of the naive Bayes classifier for continuous vari-
ables. Like its non-continuous counterpart, it is based on
the Bayes rule:

p(X |O) =
p(X)p(O|X)

p(O)

where X and O are random variables and O ∼N (µµµ,ΣΣΣ)
where µµµ and ΣΣΣ are the model’s parameters. If we substi-
tute O with Fi and X with Ji, then the probability we have
a specific set of parameters is given by Equation 1.

Given a set of feature vectors {φφφ i : i = 1 . . . I}, Ji can
be calculated using the Maximum A-Posteriori Decision
rule:

Ji = argmax
k=1...|C|

p(Ck)
I

∏
j=1

p(φφφ j|Ck)

Inversely, given a set of features φi and their correspond-
ing labels Ji, we can train the Gaussian Naive Bayes
Classifier (which means to estimate the parameters µµµ , ΣΣΣ)
using Maximum likelihood Estimation.

5.2. AVA Linear Support Vector Machine Clas-
sifier
Support Vector Machines (SVMs) are Maximum Mar-

gin classifiers. Their goal is to find a boundary that dis-
criminates the data points and retains the maximum dis-
tance from the closest ones to that boundary (the mar-
gin). Given a set of feature vectors {φφφ i : i = 1 . . . I} the

decision boundary of a Linear SVM that classifies these
vectors into two classes {+,−} is given by:

y(φφφ i) = wT
φφφ i + b

and the decision rule is:

φφφ i is classified as:
{

+ if y(φφφ i)≥ 0
− if otherwise

Training of a Linear SVM is an optimization problem
which can be solved using various methods [20].

Extending the SVMs for the multi-class case using bi-
nary classifiers can be done in two ways: One-vs-All and
All-vs-All classes (abbreviated OVA and AVA) [18]. For
the OVA case, we find a decision boundary that discrim-
inates between a class k and the other K− 1 classes, for
every k. In the AVA case, we find the decision bound-
aries for every pair (k, l) of K classes. In this work we
(arbitrarily) choose to do AVA classification.

5.3. Hidden Markov Model Maximum Likeli-
hood Classifier
Hidden Markov Models (HMMs) can be considered as
finite state automata where each state can only be in-
directly observed. States are considered hidden vari-
ables and each state is assigned one observation variable.
First-Order Hidden Markov Models are HMMs where
the transition in one state depends only on the previous
state.

An HMM of K states and Gaussian emissions is formally
given as the tuple:

θ = 〈AAA,µµµ,ΣΣΣ,ΠΠΠ〉

where AAA is the matrix of transition probabilities between
states, µµµ and ΣΣΣ are the mean vector and covariance ma-
trix of the Gaussian PDF of the observations, and ΠΠΠ is
the matrix of the states’ prior probabilities.

For our classifier we train |C|HMMs – one for each class
– using feature (observation) sequences of length L. For
each feature sequence then that we want to classify, we
choose as our class label, the label of the HMM that gives
us the Maximum Likelihood for that sequence. The deci-
sion rule is therefore given by:

Ji = argmax
k=1...K

L (φφφ i−L+1:i,xi−L+1:i|θk)

where θk are the parameters of the HMMs for the k-th
class, xi is the hidden state at the i-th moment, φφφ i is the
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corresponding emission and L (eee,x) denotes the likeli-
hood of the emission sequence eee given the state sequence
x. Likelihood L is calculated using the FORWARD algo-
rithm [17]. Each HMM in our case is trained using the
VITERBI algorithm [17]. The length of the sequence for
each class is found by doing cross-validation on the train-
ing set and choosing the length of the chain that gives the
best classification accuracy ratios.

5.4. Hidden Markov Models with SVM emis-
sions
The Gaussian HMM classifiers described above work
sufficiently, but they rely on Gaussian probability den-
sity functions (PDF) for their emissions which cannot
discriminate really well. However, SVMs can learn to
discriminate well even with very few samples. We would
like to combine the discriminating power of the SVMs
with the sequential nature of the HMMs but this is not
possible directly because SVMs do not provide emission
PDFs. Fortunately, we can use some tricks to derive a
PDF.

Using Platt’s method [19] and following the work done
in [21] for our AVA Classifier described in Section 5.2 we
have for a class Ck and a sample feature vector φφφ i [21]:

p(Ck|φφφ i) = 1/

[
K

∑
l=1,l 6=k

1
µkl
− (K−2)

]

where µkl is the probability that the class is either Ck or
Cl , that is:

µkl = p(Ck ∨Cl |φφφ i)

If we regard the class of fi our HMM’s state, then we can
compute its emission probabilities by using the Bayes
rule:

p(φφφ i|Ck) = α
p(Ck|φφφ i)

p(Ck)

where p(Ck) can be estimated by counting occurrences
of Ck in our data and α is the normalization factor. Since
our model’s states are the same as our classes, the pro-
cess of classification reduces to predicting the hidden se-
quence state of our HMM using the VITERBI algorithm.

Training of the HMM in that case is achieved by
first training the SVMs that will provide the emis-
sion probabilities, then normally training the HMM us-
ing the VITERBI or the BAUM-WELCH (FORWARD-
BACKWARD) [17] algorithm.

5.5. Sinkhole Approach Classifier
The classifiers in the sections above will perform differ-
ently depending of the nature of our features. The Gaus-
sian-based classifiers (GNB, HMM) will perform bet-
ter when our features are distributed around a Gaussian
bell, the Support Vector Machine-based classifiers (AVA,
HMM/SVM) will perform better when our features can be
discriminated by using straight lines. Similarly, the Hid-
den Markov Model-based classifiers (HMM, HMM/SVM)
will exploit the sequential nature of our features. In some
cases, one of the classifiers above may be more suitable
than the other for a set of features. We will exploit this
fact and as a final classifier-model approach, we will use
what we will call a Sinkhole approach. That is, we will
do classification on our features using all of the above
classifiers and then voting for the result.

The decision process in this case is as follows. For each
feature vector φφφ i do:

1. Classify φφφ i using the GNB, AVA, HMM, and
HMM/SVM classifiers, giving it the labels J(GNB)

i ,
J(AVA)

i , J(HMM)
i , and J(HMM/SVM)

i respectively. Those
will be our candidate labels.

2. If a candidate label appears more than the rest, pick
that as our final label.

3. When there is a draw, pick the label at random from
the candidates that are at draw.

6. TRAINING
Training takes place on excerpts from 254 audio files
taken from the Open Multitrack Testbed [22]. First the
audio data is segmented into meaningful parts (i.e. song
phrases, parts of music, etc.) using a similarity matrix
and a novelty function as found in [12]. A user is pre-
sented with a simple GUI where she can listen and apply
reverb to the extracted parts. The segmented parts are
split into frames using the method described in [13] and
a tuple of features and parameters are extracted for each
frame as described in Section 4. Features are filtered with
a low-pass filter and parameter values are compressed us-
ing K-MEANS in order to reduce the number of distinct
parameter labels. The resulting data set is used to train
the models described in Section 5.

7. RESULTS
In order to test our models, we split our data into 6 sets.
Every set included 90 audio segments except the last
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which included 58. Every segment was a part of a Bass,
Keyboards, Vocals, Percussion or Saxophone track. The
segments were randomly split into sets. Because the
training had been done by the user, the training data in-
cludes several labeling errors (that is, we incorrectly ap-
plied reverb to some parts) which we automatically de-
tect by fitting a Minimum Covariance Determinant [23]
and relabeling them by applying an initial classification
on the mislabeled features.

We define classification accuracy as the normalized (to
1.0) number of times the classifier has been correct on
its decisions, and mean squared error the average of the
squares of the difference between an estimated value of
a parameter vector and the true value of that vector.

We tested for classification accuracy and mean squared
error as such:

• Split every set into 10 parts.

• Use 9 parts for training and 1 for testing. Do this for
every combination of 10 parts.

• Use an increasing number of samples from the train-
ing set to train the models, and test them against the
full testing set. Store the classification ratio and the
mean squared error versus the number of samples
used for training.

• Finally, use the averages of all combinations to de-
rive the Classification Accuracy and Mean Squared
Error values.

# GNB AVA HMM HMMSVM SINK
1 0.716 0.793 0.703 0.696 0.820
2 0.789 0.789 0.729 0.525 0.793
3 0.769 0.736 0.760 0.537 0.709
4 0.689 0.689 0.552 0.562 0.673
5 0.805 0.772 0.769 0.535 0.777
6 0.796 0.898 0.798 0.563 0.875

Table 3: Average Classification Accuracy rates

Using the full training set, we can see the average Clas-
sification Accuracies in Table 3, and the average Mean
Squared Errors in Table 4. A comparison graph for clas-
sification accuracy can be seen in Figure 4 and for MSEs
in Figure 5. The high classification accuracy result is

# GNB AVA HMM HMMSVM SINK
1 0.015 0.013 0.019 0.010 0.006
2 0.005 0.006 0.009 0.007 0.004
3 0.018 0.020 0.014 0.019 0.019
4 0.010 0.010 0.018 0.010 0.010
5 0.097 0.014 0.013 0.017 0.010
6 0.006 0.003 0.012 0.013 0.003

Table 4: Mean Squared Errors for the normalized param-
eters.
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Fig. 4: Classification accuracy scores. Inside the bars
is the individual accuracy rate for each model and each
dataset. The total score (sum of the ratios) can be seen
next to each bar.

important because it represents the rate of agreement, be-
tween the automatic reverberation effect and the user that
it trained it, on the parameters of the reverberation. What
is more important though, is having a low mean squared
error. Mean squared error effectively measures how far
the estimated parameters are from the real ones. This
means that while the classification accuracy may be high,
so the effect and the users agree most of the time, the dif-
ferences on the parts they do not agree may be too high
for the model to be useful. Therefore, the most useful
model is the model with the least mean squared error. In
our case, the SVM and the SINK-HOLE approaches per-
form very similarly both in classification accuracy and
mean squared error.

AES 60TH INTERNATIONAL CONFERENCE, Leuven, Belgium, 2016 February 3–5

Page 6 of 8



Chourdakis AND Reiss Automatic Control of a Digital Reverberation Effect using Hybrid Models

0 0.1 0.2

GNB

SVM

HMM

HMM/SVM

SINK-HOLE

0.15

0.07

0.09

0.08

0.05

Set 1 Set 2 Set 3
Set 4 Set 5 Set 6

Fig. 5: Mean Squared Error values. The sum of the MSE
values for each classifier model can be seen next to each
bar.

8. CONCLUSION
From our graphs we can see that for our datasets, the non-
sequential models performed better than the sequential
counterparts, performing comparably or even worse than
the Naive Bayes classifier. This suggests that the Hidden
Markov Models failed to capture correctly the temporal
progression of our data, possibly suggesting further ex-
ploration with different models and configurations. The
best model so far seemed to be the All-vs-All Support
Vector Machine classifier which performed best regard-
ing Classification Accuracy and Mean Squared Error. In
the context of our reverberation effect, this means that
our model should provide correct estimates of the pa-
rameters 77.9% of the times (the average classification
accuracy over all sets).

9. LIMITATIONS/FUTURE WORK
The original Adaptive Digital Audio Effect architecture
[9] supports multitrack DAFx, while our method has only
been tested for effects applied on a single track. A logi-
cal next step would then be to extend our architecture to
multitrack audio content. Also, our method is limited to
pre-trained sets of parameters, which can be limiting in
the introduction of new unexplored audio. [24] describes
a way to control continuous control parameters using dis-
crete states using only two parameter states, something
which would fit naturally with our approach. Another

idea worth exploring is the combination with reverbera-
tion effect control using perceptual parameters, as in [5],
or descriptive terms, as in [6] and [7]. Especially the two
later, since they are dealing by design with sets of param-
eters, we would expect their method to complement ours
very naturally.
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